REARRANGEMENT OF NITRONE CYCLOADDUCTS TO METHYLENE CYCLOPROPANE. SYNTHESIS OF INDOLIZIDINE AND QUINOLIZIDINE DERIVATIVES.

A. Brandi,* A. Guarna, A. Goti and F. De Sarlo

Centro di Studio sulla Chimica e la Struttura dei Composti Eterociclici e loro Applicazioni, CNR. Dipartimento di Chimica Organica "Ugo Schiff", Università di Firenze, via G. Capponi 9, 50121 Firenze, Italy.

<u>Summary</u>: Isoxazolidines 3, obtained by cycloaddition of nitrones with methylene cyclopropane, undergo thermal rearrangement to piperidin-4-one derivatives. Indolizidine and quinolizidine derivatives are obtained from cyclic nitrones.

We reported recently on the novel rearrangement of 3-substituted-5spirocyclopropylisoxazolines, as a new entry into the dihydropyridin-4-one system.¹ We also demonstrated ² that, with a suitably functionalised side chain adjacent to nitrogen, the same rearrangement is followed by further ring-closure, thus affording indolizine or quinolizine derivatives, useful intermediates in the synthesis of N-bridgehead alkaloids.³

With the aim of expanding the synthetic utility of this new reaction, we expected that, in principle, isoxazolidines $\underline{3}$ could undergo, even more easily, the same rearrangement giving the piperidin-4-ones $\underline{5}$. The utility of such compounds in organic synthesis, prompted us to test this assumption.

1727

By 1,3-dipolar cycloaddition of nitrones $1 \\ 4$ and methylene cyclopropane (2),⁵ the isoxazolidines 3 are conveniently obtained as mixtures with the regioisomers 4, with predominance of the regioisomer 3 (Table 1). The formation of appreciable amounts of 4-spirocyclopropyl-regioisomers 4 requires a FMO treatment, in order to be fully rationalized,⁸ and this is now in progress.

TABLE 1

Attempted separation of the two regioisomers by distillation or by flash column chromatography failed and was found to be unnecessary for our purposes. In fact, as we already established for a similar case,¹ 4-spirocyclopropylisoxazolidines $\underline{4}$ are thermally more stable than the corresponding regioisomers: this is ascribed to the lack, in the isomers 4, of the cyclopropyloxy system ⁹ which supplies the driving force of the observed rearrangement. Thus, when the mixtures of the two regioisomers 3 and 4 are subjected to FVT (400°C, 0.2 mmHg), the isoxazolidines 4 are collected unchanged together with the products of rearrangement of the isoxazolidines 3. The separation of the products can then be carried out by flash chromatography without problems.

The enaminones <u>6</u> are always produced along with the piperidin-4-one derivatives <u>5</u> (Table 2). Their formation can be assumed to involve a common intermediate,¹ from which the open chain isomer is produced by H-shift from the carbon in α to the nitrogen atom.

TABLE 2

entry	isoxazolidines	rearrangement products		yields & ¹⁰		
				5	6	
I	3a	Ph N Me 5a	Ph Ph 6a	46	14	
II	Зb	$\int N \int O$ 5b	6b	54	17	
III	3с	5c	NH 6c	32	19	

The reported process demonstrates its efficiency in the production of indolizidine and quinolizidine systems (entries II and III),³ and appears to be competitive with the analogous procedure reported by Tufariello,¹¹ since it consists of a "one-pot" reaction. In fact the same rearrangement products <u>5b</u> and <u>6b</u> can be obtained by direct heating of a mixture of reagents <u>1b</u> and <u>2</u> in a sealed tube at 100°C for 24 h.

Synthetic applications of this new method are the object of further studies in our group.

Acknowledgments

The authors thank Mr. Sandro Papaleo and Mr. Remo Orlandi for their technical support.

References and notes

- A. Guarna, A. Brandi, A. Goti, and F. De Sarlo, J.C.S. Chem. Commun., 1985, 1518.
- 2. A. Brandi, A. Goti, A. Guarna, and F. Dc Sarlo, *J.C.S. Chem. Commun.*, in the press.
- a) J. A. Lamberton, *Alkaloids* (London), 13, 82 (1983); b) M. F. Grundon, *ibid.*, 13, 87 (1983); see also preceding volumes.
- 4. a) J. Hamer and A. Macaluso, *Chem. Rev.*, 64, 473 (1964); b) D. St. C. Black, R. F. Crozier, and V. C. Davis, *Synthesis*, 1975, 205.
- 5. Reaction conditions: a mixture of neat nitrone and methylene cyclopropane (2 eq.) was heated in a sealed tube at 60°C.
- 6. Overall yield of the regioisomers, purified by passing the crude reaction mixture through a short pad of silica gel and concentrating. The new cycloadducts <u>3a-c</u> and <u>4a-c</u> gave satisfactory GC-MS, NMR (¹H and ¹³C) and IR analyses; compounds <u>4a</u> and <u>4b</u> were isolated after rearrangement of the regioisomers (see the text).
- 7. Based on the nitrone lc precursor, *i.e.* N-hydroxypiperidine.
- 8. R. Huisgen, H. Seidl, and I. Brüning, Chem. Ber., 102, 1102 (1969).
- 9. a) B. M. Trost, Chem. Soc. Rev., 11, 141 (1982); b) B. M. Trost, Gazz. Chim. Ital., 114, 139 (1984).
- 10. Compounds isolated by flash chromatography (eluant CH₂Cl₂-MeOH, 10:1). The reported structures <u>5a-c</u> and <u>6a-c</u> are supported by spectral data (MS, ¹H and ¹³C NMR, IR); these agree with the available values reported for the previously known compounds <u>5a</u> [K. Hohenlohe-Oehringen, Monatsh., 94, 1222 (1963)] and <u>5c</u> [S. F. Mason, K. Schofield, and R. J. Wells, J. Chem. Soc. (C), 1967, 626].

(Received in UK 27 January 1986)

^{11.} J. J. Tufariello, Acc. Chem. Res., 12, 396 (1979).